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Abstract
Chang impact analysis is useful in software maint-

nenance and evolution. Many techniques have been pro-
posed to support change impact analysis at the code level
of software systems, but little e�ort has been made for
change impact analysis at the architectural level. In this
paper, we present an approach to support change impact
analysis of software architectures based on architectural
slicing technique. The main feature of our approach is
to assess the e�ect of changes in a software architecture
by analyzing its formal architectural speci�cation, and
therefore, the process of change impact analysis at the
architectural-level can be automated completely.

1 Introduction

Software change is an essential operation for soft-
ware evolution. The change is a process that either
introduces new requirements into an existing system,
or modi�es the system if the requirement were not cor-
rectly implemented, or moves the system into a new
operation environment. The mini-cycle of change as de-
scribed in [15] is composed of the several phases: request
for change, planning phase which consists of program
comprehension and change impact analysis, change im-
plementation including restructuring for change and
change propagation, veri�cation and validation, and re-
documentation. Among these phases, in this paper we
will focus our attentions on the issue of planing phase,
in particularly, change impact analysis.

Change impact analysis is the task that through
which the programmers can assess the extent of the
change, i.e., the software component that will impact
the change, or be impacted by the change. Change im-
pact analysis provide techniques to address the problem
by identifying the likely ripple-e�ect of software changes
and using this information to re-engineer the software
system design.

Most work on software change impact analysis fo-
cused on code level of software systems which are de-
rived solely from source code of a program [3, 6, 7], and
the study of architectural-level change impact analysis
has received little attention. However, as software sys-
tems become large and complex, it is necessary to per-
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form architectural-level impact analysis because it al-
lows you to capture the information of change e�ect of
the a system's architecture earlier in the system life cy-
cle so you can perform software evolution actions earlier
[10].

However, the study of architectural-level impact
analysis has received little attention in comparison with
code-level impact analysis. One important reason is
while the code level for software systems is now well un-
derstood, the architectural level is currently understood
mostly at the level of intuition, anecdote, and folklore
[12]. Existing representations that a system architect
uses to represent the architecture of a software system
are usually informal and ad hoc, and therefore can not
capture enough useful information of the system's ar-
chitecture. Moreover, with such an informal and ad hoc
manner, it is di�cult to develop analysis tools to au-
tomatically support the change impact analysis at the
architectural level of software systems. In order to de-
velop architectural-level change impact analysis tool to
support architectural evolution during software design,
formal modeling of software architectures is strongly re-
quired.

Recently, as the size and complexity of software sys-
tems increases, the design and speci�cation of the over-
all software architecture of a system is receiving increas-
ingly attention. The software architecture of a system
de�nes its high-level structure, exposing its gross orga-
nization as a collection of interacting components. A
well-de�ned architecture allows an engineer to reason
about system properties at a high level of abstraction
[12]. Architecture description languages (ADLs) are for-
mal languages that can be used to represent the archi-
tecture of a software system. They focus on the high-
level structure of the overall application rather than the
implementation details of any speci�c source module.
In order to support formal representation and reason-
ing of software architecture, a number of ADLs such
as Wright [1], Rapide [8], and UniCon [11] have been
proposed. By using an ADL, a system architect can
formally represent various general attributes of a soft-
ware system's architecture. This provides a promising
solution to develop techniques to support change im-
pact analysis for software architectures because formal
language support for software architecture provides a
useful platform on which automated support tools for
architectural-level impact analysis can be developed.

In this paper, we present an approach for change im-
pact analysis of software architectures based on archi-
tectural slicing technique. The main feature of our ap-



proach is to assess the e�ect of changes in a software ar-
chitecture by analyzing its formal architectural speci�-
cation, and therefore, the process of change impact anal-
ysis at the architectural-level can be automated com-
pletely.

Traditional program slicing, originally introduced by
Weiser [14], is a decomposition technique which extracts
program elements related to a particular computation.
A program slice consists of those parts of a program that
may directly or indirectly a�ect the values computed at
some program point of interest, referred to as a slicing
criterion. The task to compute program slices is called
program slicing.

In contrast to traditional program slicing, architec-
tural slicing is designed to operate on a formal archi-
tectural speci�cation of a software system, rather than
the source code of a conventional program. Architec-
tural slicing provides knowledge about the high-level
structure of a software system, rather than the low-
level implementation details of a conventional program.
Our purpose for development of architectural slicing is
to support architectural-level impact analysis, mainte-
nance, reengineering, and reverse engineering of large-
scale software systems.

Applying slicing technique to change impact analysis
of software architectures promises bene�t for software
architecture understanding and maintenance. When a
maintainer wants to modify a component in a software
architecture in order to satisfy new design requirements,
the maintainer must �rst investigate which components
will a�ect the modi�ed component and which compo-
nents will be a�ected by the modi�ed component. This
process is usually called impact analysis. By slicing a
software architecture, the maintainer can extract the
parts of a software architecture containing those com-
ponents that might a�ect, or be a�ected by, the mod-
i�ed component. The slicing tool which provides such
information can assist the maintainer greatly.

The primary idea of architectural slicing has been
presented in [16, 17, 18], and this article can be regarded
as an outgrowth of applying architectural slicing to sup-
port impact analysis of software architectures.

The rest of the paper is organized as follows. Section
2 brie
y introduces how to represent a software archi-
tecture using Wright: an architectural description lan-
guage. Section 3 shows a motivation example. Section 4
describes some notions about architectural slicing. Sec-
tion 5 discusses some related work. Concluding remarks
are given in Section 6.

2 Software Architectural Speci�cation
in Wright

We assume that readers are familiar with the basic
concepts of software architecture and architectural de-
scription language, and in this paper, we use Wright

architectural description language [1] as our target lan-
guage for formally representing software architectures.
The selection of Wright is based on that it supports to
represent not only the architectural structure but also
the architectural behavior of a software architecture.

Below, we use a simple Wright architectural speci-
�cation taken from [9] as a sample to brie
y introduce
how to use Wright to represent a software architecture.
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Figure 1: The architecture of the Gas Station system.

The speci�cation is showed in Figure 2 which models the
system architecture of a Gas Station system [4].

2.1 Representing Architectural Structure

Wright uses a con�guration to describe architec-
tural structure as graph of components and connectors.

Components are computation units in the system. In
Wright, each component has an interface de�ned by a
set of ports. Each port identi�es a point of interaction
between the component and its environment.

Connectors are patterns of interaction between com-
ponents. In Wright, each connector has an interface
de�ned by a set of roles. Each role de�nes a participant
of the interaction represented by the connector.

A Wright architectural speci�cation of a system is
de�ned by a set of component and connector type de�ni-
tions, a set of instantiations of speci�c objects of these
types, and a set of attachments. Attachments specify
which components are linked to which connectors.

For example, in Figure 2 there are three compo-
nent type de�nitions, Customer, Cashier and Pump, and
three connector type de�nitions, Customer_Cashier,
Customer_Pump and Cashier_Pump. The con�guration
is composed of a set of instances and a set of attach-
ments to specify the architectural structure of the sys-
tem.

2.2 Representing Architectural Behavior

Wright models architectural behavior according to
the signi�cant events that take place in the computa-
tion of components, and the interactions between com-
ponents as described by the connectors. The notation
for specifying event-based behavior is adapted from CSP
[5]. Each CSP process de�nes an alphabet of events and
the permitted patterns of events that the process may
exhibit. These processes synchronize on common events
(i.e., interact) when composed in parallel. Wright uses
such process descriptions to describe the behavior of
ports, roles, computations and glues.

A computation speci�cation speci�es a component's
behavior: the way in which it accepts certain events on
certain ports and produces new events on those or other



Con�guration GasStation
Component Customer

Port Pay = pay!x! Pay
Port Gas = take ! pump?x ! Gas
Computation = Pay.pay!x! Gas.take ! Gas.pump?x ! Computation

Component Cashier
Port Customer1 = pay?x ! Customer1
Port Customer2 = pay?x ! Customer2
Port Topump = pump!x ! Topump
Computation = Customer1.pay?x ! Topump.pump!x! Computation

[] Customer2.pay?x! Topump.pump!x ! Computation
Component Pump

Port Oil1 = take ! pump!x ! Oil1
Port Oil2 = take ! pump!x ! Oil2
Port Fromcashier = pump?x ! Fromcashier
Computation = Fromcashier.pump?x!

(Oil1.take ! Oil1.pump!x ! Computation)

[] (Oil2.take! Oil2.pump!x ! Computation)
Connector Customer Cashier

Role Givemoney = pay!x ! Givemoney
Role Getmoney = pay?x ! Getmoney
Glue = Givemoney.pay?x ! Getmoney.pay!x ! Glue

Connector Customer Pump
Role Getoil = take ! pump?x ! Getoil
Role Giveoil = take! pump!x ! Giveoil
Glue = Getoil.take ! Giveoil.take ! Giveoil.pump?x! Getoil.pump!x ! Glue

Connector Cashier Pump
Role Tell = pump!x ! Tell
Role Know = pump?x ! Know
Glue = Tell.pump?x! Know.pump!x ! Glue

Instances
Customer1: Customer
Customer2: Customer
cashier: Cashier
pump: Pump
Customer1 cashier: Customer Cashier
Customer2 cashier: Customer Cashier
Customer1 pump: Customer Pump
Customer2 pump: Customer Pump
cashier pump: Cashier Pump

Attachments
Customer1.Pay as Customer1 cashier.Givemoney
Customer1.Gas as Customer1 pump.Getoil
Customer2.Pay as Customer2 cashier.Givemoney
Customer2.Gas as Customer2 pump.Getoil
casier.Customer1 as Customer1 cashier.Getmoney
casier.Customer2 as Customer2 cashier.Getmoney
cashier.Topump as cashier pump.Tell
pump.Fromcashier as cashier pump.Know
pump.Oil1 as Customer1 pump.Giveoil
pump.Oil2 as Customer2 pump.Giveoil

End GasStation.

Figure 2: An architectural speci�cation in Wright.

ports. Moreover, Wright uses an overbar to distin-
guish initiated events from observed events �. For ex-
ample, the Customer initiates Pay action (i.e., pay!x)

while the Cashier observes it (i.e., pay?x).
A port speci�cation speci�es the local protocol with

which the component interacts with its environment
through that port.

A role speci�cation speci�es the protocol that must
be satis�ed by any port that is attached to that role.
Generally, a port need no have the same behavior as the
role that it �lls, but may choose to use only a subset of
the connector capabilities. For example, the Customer

role Gas and the Customer_Pump port Getoil are iden-
tical.

�In this paper, we use an underbar to represent an ini-
tiated event instead of an overbar that used in the original
Wright language de�nition [1].

A glue speci�cation speci�es how the roles of a
connector interact with each other. For example, a
Cashier_Pump tell (Tell.pump?x) must be transmitted
to the Cashier_Pump know (Know.pump!x).

As a result, based on formal Wright architectural
speci�cations, we can infer which ports of a component
are input ports and which are output ports. Also, we
can infer which roles are input roles and which are out-
put roles. Moreover, the direction in which the infor-
mation transfers between ports and/or roles can also be
inferred based on the formal speci�cation. Such kinds of
information can be used to construct the architectural

ow graph of a software architecture for computing an
architectural slice e�ciently.

In this paper we assume that a software architec-
ture be represented by a formal architectural speci�-
cation which contains three basic types of design enti-



ties, namely, components whose interfaces are de�ned
by a set of elements called ports, connectors whose in-
terfaces are de�ned by a set of elements called roles and
the con�guration whose topology is declared by a set of
elements called instances and attachments. Moreover,
each component has a special element called computa-
tion and each connector has a special element called glue
as we described above. In the rest of the paper, we as-
sume that an architectural speci�cation P be denoted
by (Cm; Cn; cg) where Cm is the set of components in
P , Cn is the set of connectors in P , and cg is the con-
�guration of P .

3 Motivation Example

We present a simple example to explain our approach
on change impact analysis for software architectures via
architectural slicing.

Consider the Gas Station system whose architectural
representation is shown in Figure 1, and Wright spec-
i�cation is shown in Figure 2. Suppose a maintainer
needs to modify the component cashier in the archi-
tectural speci�cation in order to satisfy some new de-
sign requirements. The �rst thing the maintainer has
to do is to investigate which components and connec-
tors interact with component cashier through its ports
Customer1, Customer2, and Topump. A common way
is to manually check the source code of the speci�ca-
tion to �nd such information. However, it is very time-
consuming and error-prone even for a small size speci-
�cation because there may be complex dependence re-
lations between components in the speci�cation. If the
maintainer has an architectural slicer at hand, the work
may probably be simpli�ed and automated without the
disadvantages mentioned above. In such a scenario,
an architectural slicer is invoked, which takes as input:
(1) a complete architectural speci�cation of the system,
and (2) a set of ports of the component cashier, i.e.,
Customer1, Customer2 and Topump (this is an archi-
tectural slicing criterion). The slicer then computes a
backward and forward architectural slice respectively
with respect to the criterion and outputs them to the
maintainer. A backward architectural slice is a partial
speci�cation of the original one which includes those
components and connectors that might a�ect the com-
ponent cashier through the ports in the criterion, and
a forward architectural slice is a partial speci�cation of
the original one which includes those components and
connectors that might be a�ected by the component
cashier through the ports in the criterion. The other
parts of the speci�cation that might not a�ect or be af-
fected by the component cashier will be removed, i.e.,
sliced away from the original speci�cation. The main-
tainer can thus examine only the contents included in a
slice to investigate the impact of modi�cation.

4 Architectural Slicing

In this paper we assume that a software architec-
ture be represented by a formal architectural speci�-
cation which contains three basic types of design enti-
ties, namely, components whose interfaces are de�ned

by a set of elements called ports, connectors whose in-
terfaces are de�ned by a set of elements called roles and
the con�guration whose topology is declared by a set of
elements called instances and attachments. Moreover,
each component has a special element called computa-
tion and each connector has a special element called glue
as we described above. In the rest of the paper, we as-
sume that an architectural speci�cation P be denoted
by (Cm; Cn; cg) where Cm is the set of components in
P , Cn is the set of connectors in P , and cg is the con-
�guration of P .

Intuitively, an architectural slice may be viewed as a
subset of the behavior of a software architecture, simi-
lar to the original notion of the traditional static slice.
However, while a traditional slice intends to isolate the
behavior of a speci�ed set of program variables, an ar-
chitectural slice intends to isolate the behavior of a spec-
i�ed set of a component or connector's elements. Given
an architectural speci�cation P = (Cm; Cn; cg), our goal
is to compute an architectural slice Sp = (C 0

m
; C 0

n
; c0
g
)

which consists of those components and connectors of P
that preserve partially the semantics of P . we can give
some notions of architectural slicing as follows.

In a Wright architectural speci�cation, for exam-
ple, a component's interface is de�ned to be a set of
ports which identify the form of the component inter-
acting with its environment, and a connector's inter-
face is de�ned to be a set of roles which identify the
form of the connector interacting with its environment.
To understand how a component interacts with other
components and connectors to making changes, a main-
tainer must examine each port of the component of in-
terest. Moreover, it has been frequently emphasized
that connectors are as important as components for ar-
chitectural design, and a maintainer may also want to
modify a connector during the maintenance. To satisfy
these requirements, we can de�ne a slicing criterion for
a Wright architectural speci�cation as a set of ports of
a component or a set of roles of a connector of interest.

Let P = (Cm; Cn; cg) be an architectural speci�ca-
tion. A slicing criterion for P is a pair (c;E) such that:
(1) c 2 Cm and E is a set of elements of c, or (2) c 2 Cn
and E is a set of elements of c.

Note that the selection of a slicing criterion depends
on users' interests on what they want to examine. If
they are interested in examining a component in an ar-
chitectural speci�cation, they may use slicing criterion
1. If they are interested in examining a connector, they
may use slicing criterion 2. Moreover, the determina-
tion of the set E also depends on users' interests on
what they want to examine. If they want to examine
a component, then E may be the set of ports or just a
subset of ports of the component. If they want to ex-
amine a connector, then E may be the set of roles or
just a subset of roles of the connector.

Let P = (Cm; Cn; cg) be an architectural speci�ca-
tion. A backward architectural slice Sbp of P on a given
slicing criterion (c; E) is a set of those reduced compo-
nents, connectors, and con�guration that might directly
or indirectly a�ect the behavior of c through elements in
E. A forward architectural slice Sfp of P on a given slic-
ing criterion (c;E) is a set of those reduced components,
connectors, and con�guration that might be directly or



Con�guration GasStation
Component Customer

Port Pay = pay!x ! Pay

Computation = Pay.pay!x ! Gas.take ! Gas.pump?x ! Computation
Component Cashier

Port Customer1 = pay?x ! Customer1
Port Customer2 = pay?x ! Customer2
Port Topump = pump!x ! Topump
Computation = Customer1.pay?x! Topump.pump!x ! Computation

[] Customer2.pay?x ! Topump.pump!x! Computation

Connector Customer Cashier
Role Givemoney = pay!x ! Givemoney
Role Getmoney = pay?x ! Getmoney
Glue = Givemoney.pay?x! Getmoney.pay!x ! Glue

Instances
Customer1: Customer
Customer2: Customer
cashier: Cashier

Customer1 cashier: Customer Cashier
Customer2 cashier: Customer Cashier

Attachments
Customer1.Pay as Customer1 cashier.Givemoney

Customer2.Pay as Customer2 cashier.Givemoney

casier.Customer1 as Customer1 cashier.Getmoney
casier.Customer2 as Customer2 cashier.Getmoney

End GasStation.

Figure 3: A backward slice of the architectural speci�cation in Figure 2.

indirectly a�ected by the behavior of c through elements
in E.

The view of an architectural slice de�ned above con-
tains enough information for a maintainer to facilitate
the modi�cation.

The slicing notions de�ned here give us only a general
view of an architectural slice, and do not tell us how to
compute it. In [17, 18] we presented a two-phase algo-
rithm to compute a slice of an architectural speci�ca-
tion based on its information 
ow graph. Our algorithm
contains two phases: (1) Computing a slice Sg over the
information 
ow graph of an architectural speci�cation,
and (2) Constructing an architectural slice Sp from Sg.

Figure 3 shows a backward slice of the Wright spec-
i�cation in Figure 2 with respect to the slicing criterion
(cashier, E) such that E=fCustomer1, Customer2,
Topumpg is a set of ports of component cashier.

5 Related Work
Many researches have been done to support change

impact analysis of software systems at the code level.

Bohner and Arnold [2] recently edited a book which is a
collection of many papers and articles related to change
impact analysis of software systems at the code level.
However, in comparison with code-level change impact
analysis, the study of architectural-level change impact
analysis of software systems has received little attention.
To the best of our knowledge, the only work that is sim-
ilar with ours is that presented by Sta�ord, Richardson
and Wolf [13], who introduced a software architecture
dependence analysis technique, called chaining to sup-
port software architecture development such as debug-
ging and testing. In chaining, links represent the depen-
dence relationships that exist in an architectural speci�-
cation. Links connect elements of the speci�cation that
are directly related, producing a chain of dependences
that can be followed during analysis. However, their
technique is mainly focused on handling Rapide archi-
tectural description language in which connectors are
not explicitly modeled.



6 Concluding Remarks

In this paper, we presented an approach for change im-
pact analysis of software architectures based on archi-
tectural slicing technique. The main feature of our ap-
proach is to assess the e�ect of changes of a software ar-
chitecture by analyzing its formal architectural speci�-
cation, and therefore, the process of change impact anal-
ysis at the architectural-level can be automated com-
pletely.

In architectural description languages, in addition
to provide both a conceptual framework and a con-
crete syntax for characterizing software architectures,
they also provide tools for parsing, displaying, compil-
ing, analyzing, or simulating architectural speci�cations
written in their associated language. However, exist-
ing language environments provide no tools to support
architectural-level change impact analysis from an engi-
neering viewpoint. We believe that such a tool should
be provided by any ADL as an essential means to sup-
port software architecture development and evolution.

To demonstrate the usefulness of our impact analy-
sis approach, we plan to implement an impact analysis
tool for Wright architectural descriptions to support
architectural-level understanding and evolution.
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